
Real-time analysis of the telegrapher’s equation for tunneling processes

A. Ranfagni,1,2 D. Mugnai,1 and M. A. Vitali2
1Istituto di Fisica Applicata “Nello Carrara,” CNR, Via Panciatichi 64, 50127 Firenze, Italy

2Scuola di Specializzazione in Ottica dell’Università di Firenze, Firenze, Italy
(Received 24 November 2003; published 28 May 2004)

Based on a close analogy with anRLC circuit, a model for interpreting delay times in forbidden regimes
(tunneling) is formulated, avoiding the analytical continuation into imaginary time. In this way, a reasonable
description of experimental data, which were previously reported for a waveguide propagation below the cutoff
frequency at,9.5 GHz, is obtained.
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In a previous paper[1], a stochastic modeling of tunneling
processes, based on the Kac’s solution of the telegrapher’s
equation[2] suitably continued in an analytical manner into
imaginary time[3], has been improved. The model described
in Ref. [1] demonstrated its ability to interpret results of
delay time in microwave experiments performed in both al-
lowed and forbidden spectral regions, namely, above and be-
low the cutoff frequency of narrow waveguide sections of
different lengths.

The purpose of the present work is to further investigate
this problem in an attempt at finding a different formulation
of the model, avoiding the analytical continuation into imagi-
nary time; that is, by considering the time in its natural char-
acteristic as a real variable.

At first, we want to show that the telegrapher’s equation
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whereF represents the voltage for a real line or, more gen-
erally, a field component, can be solved in a relatively sim-
pler way (with respect to that of Ref.[2]), by using the
method of the Laplace transforms. Denoting the transform of
Fsx,td by fsx,sd, the Laplace transform of the wave equation
(1) is [4,5]
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whereFsx,td is a solution of Eq.(1) without dissipationsa
=0d. For a simple progressive wave of the typeFsx,td
=sinsx−vtd [6], Eq. (2) becomes
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A solution of Eq. (3) can be found in the formf =A sin x
+B cosx, with A andB functions ofs. Furthermore, by using
a standard procedure, we easily obtain[7]

fsx,sd =
ss+ 2adsin x − v cosx

v2 + s2 + 2as
. s4d

The inverse Laplace transform of Eq.(4) is the solution of
Eq. (1) sought, namely,[4]

Fsx,td = e−atFsin x cossw1td +
a

w1
sin x sinsw1td

−
v
w1

cosx sinsw1tdG , s5d

where w1=Îv2−a2, with vùa. When vøa, the circular
functions are replaced by hyperbolic functions, and the argu-
mentw1t becomesw2t with w2=Îa2−v2 (for v2.0), or w3t
with w3=Îa2+ uv2u (for v2,0).

The result expressed by Eq.(5) is identical to the one
obtained by using the method of Ref.[2] [see Eq.(13) in
Ref. [5], for a=1 andb=0, or Eq.(7) in Ref. [3]]. However,
although original and elegant, this method implies many cal-
culations, and it is undoubtedly more complicated than the
one adopted here, which makes it possible to find a solution
of Eq. (1) immediately.

Equation (5) and related expressions(for v,a and
v2,0) were at the basis of the model formulated in Ref.[3].
There, however, in order to avoid aperiodic functions of
time, which were considered not suitable for interpreting de-
lay time results(because of the difficulty in defining a shift
between two functions of this kind), we adopted the analyti-
cal continuation into imaginary timest→ itd in order to re-
cover pseudo progressive waves of the sinsx−w2,3td type[8].
As anticipated before, in this paper we will try to use the
solution of the telegrapher’s equation[Eq. (5)] by maintain-
ing the reality of the time, and avoiding the analytical con-
tinuation into the imaginary one.

The shape ofFsx,td is shown in Fig. 1(a) for the case of
v.a and in Fig. 1(b) for v,a. In the first case, the delay in
going fromx=0 to x=1 is clearly identified with the dephas-
ing between the two wave forms. In the second case, this
identification is less evident. A rough criterion for evaluating
the delay, whenx increases, can be obtained by considering
the intersection of the tangent at the initial portion of the
curve with the time axis[dotted lines in Fig. 1(b)], which
increases with an increase in the spatial coordinatex. This
criterion is rather naive; however, it would be exact only if
the curves could be identified with single exponential func-
tions, the time constants of which are given by the above
intersection.

A more refined criterion can be established on the basis of
an analogy of the system under study(a narrowed waveguide
section which is the homolog of a rectangular potential bar-
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rier) with an electric circuit of anRLC type, see Fig. 2. In
fact, a section of waveguide can be considered as a section of
a line which, in turn, is equivalent to an electric network
constituted by resonant circuits of different resonant frequen-
cies. If we limit ourselves to the neighborhood of one reso-
nant frequency, it appears natural to consider a single circuit
[7]. According to the analysis of Ref.[9], the responseeostd
to a step signal of amplitudeE can be approximated by the
sum of two exponential functions of the type

eostd = Efexpsp1td − expsp2tdg, s6d

wherep1,2 are the roots of the characteristic equation given
by [Eq. (2.34) in Ref. [9]]
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By putting

K = S 1

2R
DÎL

C
,

the shape of Eq.(6) for overdamped casesK.1 (see Figs.
2.24 and 2.30 in Ref.[9]) is indeed the same type as that in
Fig. 1(b). In underdamped cases, forK,1, the response is a
damped oscillation(see Figs. 2.26 and 2.32 in Ref.[9]),
similar to that of Fig. 1(a).

By identifying 1/s2RCd with a and 1/sLCd with v2 in Eq.
(1) [10], the roots of Eq.(7) —the inverse of the time
constants—fora.v become:

p1,2= − a ± Îa2 − v2 = − a ± w2. s8d

A natural extension to the case ofv2,0 is to consider the
roots as being given byp1,2=−a±w3 sw3=Îa2+ uv2ud. In this
way, we obtain a first noteworthy result: the delay time, as
given by

t3 =
1

a + w3
=

1

a + Îa2 + uv2u
, s9d

is found to be practically coincident with the one reported as
Eq. (5) in Ref. [1] for l =1, namely,

t38 =
1

2a
F1 − expS−

2a

uvu DG . s10d

The time as defined by Eq.(10) is a direct consequence of
the hypothesis formulated in Ref.[8], according to which the
roles of the time variablest (the “true” time) and r̄ (the
randomized time) are exchanged when passing from classical
to tunneling motions as analyzed within the framework of a
stochastic model[1–3]. In Fig. 3 (upper part), we compare
the delay as given by Eqs.(9) and (10) for a=0.1, as a
function of v2 in the −0.06–0 range. In order to better un-
derstand the dependence on the lengthl and the frequencyn,
it is convenient to rewrite Eq.(9) as

t3 =
S l

c
D

Sal

c
D +ÎSal

c
D2

+ S uvul
c
D2

=
S l

c
D

S ã

2c
D +ÎS ã

2c
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+ S2uDnu
n0

D , s11d

wherec is the light velocity in vacuum,n0=9.495 GHz is the
cutoff frequency,ã=2al, andvl = ṽ is the group velocity in
waveguide which, forn,n0, is given by

ṽ = cÎs2uDnud/n0 with Dn = n − n0.

Analogously, Eq.(10) becomes

FIG. 1. Shapes of the functionFsx,td as given by Eq.(5): (a) for
the case ofv=0.2 anda=0.05, where the delay, fromx=0 to x=1,
is clearly evidenced;(b) for the case ofv=0.07 anda=0.1, where
the delay for the differentx values is roughly obtained by the inter-
section of the tangent by the time axis.

FIG. 2. An RLC circuit which is the analogous of the system
under study(from Ref. [9]).
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The curves calculated with Eqs.(11) and (12) are shown in
Fig. 3 (lower part) as a function ofDn, and confirm their
very good agreement.

In order to obtain the delay curve fora.v, Eq.(9) simply
becomes

t2 =
1

a + w2
=

1

a + Îa2 − v2
s13d

and, after the proper substitutions, we have
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2c
D2

−
2Dn

n0

with
2Dn

n0
ø S ã

2c
D2

. s14d

A further extension to upper frequencies, that is, for
2Dn /n0. sã/2cd2, can be obtained by consideringw1,
namely,

t1 =
1

a − w1
=

1

a − Îv2 − a2
with w1 , a, s15d

which, after the aforesaid substitutions, becomes

t1 =
S l

c
D
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2c
D −Î2Dn
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− S ã

2c
D2
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When calculated in the appropriate frequency ranges, Eqs.
(11), (14), and (16) give rise to a continuous curve, as rep-
resented in Fig. 4, where the experimental data are also re-
ported for the case ofl =15 cm. For the constantã/c, the
value of 0.160 was selected in order to obtain a reasonable
description of the data. However, the agreement remains
rather poor mainly because of the presence of a pronounced
knee in the theoretical curve, which is not so evident in the
experimental data. However, the description of the data is
now better than that of Fig. 3 in Ref.[1] where a disconti-
nuity was present in passing fromt3 to t2, one which is
absent in the present model. The behavior for upper frequen-
cies, described by Eq.(4) in Ref. [1], is not considered here.
The present effort is devoted to the interpretation of the ex-
perimental data in the tunneling spectral region alone(lower
frequency range).

Until now, the role of the two time constants—the inverse
of −p1,2 as given by Eq.(8)—has been considered separately,
obtaining the results shown in Fig. 4. More properly, for a
system characterized by two time constants(t1 and t2), the
delay time is given, with a good approximation, by the sum
of the two time constants(see Fig. 2.18 in Ref.[9]). In the
formulas, we have

tef f . t1 + t2 = −
1

p1
−

1

p2
= −

p1 + p2

p1p2
, s17d

where −p1,2=a±w=a±Îa2−v2. Thus, tef f is found to be
given simply by

FIG. 3. Delay in arbitrary units, upper part, as given by Eq.(9)
(continuous line) and Eq.(10) (dotted line) as a function ofv2, for
a=0.1. In the lower part, the delay in ns as given by Eq.(11)
(continuous line) and Eq.(12) (dotted line) as a function ofDn
=n−n0 in GHz. Parameter values are:l /c=0.5 ns andã/c=0.112.

FIG. 4. Delay curve as given by Eqs.(11), (14), and (16) for
l /c=0.5 ns andã/c=0.16, compared with the experimental data in
the low frequency region forl =15 cm and for different series of
measurements(from Ref. [1]).
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tef f .
2a

a2 − w2 =
2a

v2 , s18d

which holds also forv2,0, taking forv2 its absolute value.
Since Eq.(8) was obtained from Eq.(7) by identifying 1/LC
with v2, we deduce thatv2 must have the dimension of
stimed−2. In this way, we rightly obtain a time in Eq.(18),
wherea has the dimension ofstimed−1 [10]. Analogously to
what was done in order to obtain Eq.(11) from Eq. (9) (ṽ
=cÎ2uDnu /n0 is a true velocity), we have to modify Eq.(18)
by including a factorl2 [as already made on Eqs.(11) and
(12)], namely,

tef f . 2asl/ṽd2. s19d

The inclusion ofl2 can be further justified considering that
the delay of aLC cell in an artificial line(that is a series of
lumped-constant circuits similar to the one considered here)
is given byta=ÎLC (see Chap. 10 in Ref.[9]). The delay of
a section of lengthl of a transmission line is given bytl

= lÎL0C0, whereL0 andC0 are the inductance and the capaci-
tance per unit length, respectively, and 1/ÎL0C0 is the propa-
gation velocity in the line. By identifyingta with tl, in order
to have a velocity as given byṽ= l /t, we must deduceṽ
= l /ÎLC, so that sl / ṽd2=LC rightly has dimensions of
stimed2.

Equation(19) represents another noteworthy result, since
it supplies an expression for the delay time, which is very
similar to the one already obtained within the framework of
a stochastic model, as well as in that of a path-integral treat-
ment, according to which the delay time is given simply by
ats

2, wherets is the semiclassical time just given byl / ṽ [1].
The continuous line shown in Fig. 5 was obtained from

Eq. (19) by takinga=0.11 ns−1 and an effective value for the

cutoff frequency, which is a little larger than the nominal one
[3], namely,n0=9.56 GHz. Thus, a better description of the
experimental data is obtained, also considering that is ob-
tained from a single expression. For the sake of complete-
ness, in Fig. 5 we report also the curve describing the behav-
ior in the upper frequency region(dashed line, taken from
Ref. [1]).

We can therefore conclude that this last approach to tun-
neling time determination gives a very acceptable description
of the data, and confirms the prediction already obtained by
different approaches to the problem[11,12].
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