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Real-time analysis of the telegrapher’s equation for tunneling processes
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Based on a close analogy with &1LC circuit, a model for interpreting delay times in forbidden regimes
(tunneling is formulated, avoiding the analytical continuation into imaginary time. In this way, a reasonable
description of experimental data, which were previously reported for a waveguide propagation below the cutoff
frequency at~9.5 GHz, is obtained.
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In a previous papdil], a stochastic modeling of tunneling
processes, based on the Kac’s solution of the telegrapher’s
equation[2] suitably continued in an analytical manner into
imaginary time[3], has been improved. The model described
in Ref. [1] demonstrated its ability to interpret results of
delay time in microwave experiments performed in both al-
lowed and forbidden spectral regions, namely, above and bavhere w;=\v?-a?, with v=a. Whenv<a, the circular
low the cutoff frequency of narrow waveguide sections offunctions are replaced by hyperbolic functions, and the argu-
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mentw;t becomesw,t with w,=va?-v? (for v?>0), or wst

The purpose of the present work is to further investigatewith ws=va?+[v? (for v2<0).

this problem in an attempt at finding a different formulation

The result expressed by E¢p) is identical to the one

of the model, avoiding the analytical continuation into imagi- obtained by using the method of R¢R] [see Eq.(13) in
nary time; that is, by considering the time in its natural char-Ref. [5], for «=1 andB=0, or Eq.(7) in Ref. [3]]. However,

acteristic as a real variable.

although original and elegant, this method implies many cal-

At first, we want to show that the telegrapher’s equation culations, and it is undoubtedly more complicated than the
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one adopted here, which makes it possible to find a solution
of Eg. (1) immediately.

Equation (5) and related expressiondfor v<a and
v2<0) were at the basis of the model formulated in R&f.

whereF represents the voltage for a real line or, more gen-There, however, in order to avoid aperiodic functions of
erally, a field component, can be solved in a relatively simyjme, which were considered not suitable for interpreting de-

pler way (with respect to that of Ref[2]), by using the

lay time resultgbecause of the difficulty in defining a shift

method of the Laplace transforms. Denoting the transform Ofetween two functions of this kindwe adopted the analyti-
F(x,t) by f(x,s), the Laplace transform of the wave equation ¢4 continuation into imaginary timé&—i7) in order to re-

(1) is [4,5]
a2
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where®d(x,t) is a solution of Eq(1) without dissipationa
=0). For a simple progressive wave of the tydgx,t)
=sin(x—-vt) [6], Eq.(2) becomes

d?f 1 s+2a 1
— - S(+2a9f + sinx - —cosx=0.
dx® v2( ) v? v
A solution of Eq.(3) can be found in the fornf=A sinx
+B cosx, with A andB functions ofs. Furthermore, by using
a standard procedure, we easily obtgih

()

fx.s) = (s+ 2a)sin x—v cosx
= v2+s°+ 2as

(4)

The inverse Laplace transform of E@) is the solution of
Eqg. (1) sought, namelyj4]
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cover pseudo progressive waves of thésiw, 37) type[8].

As anticipated before, in this paper we will try to use the
solution of the telegrapher’s equatipBqg. (5)] by maintain-
ing the reality of the time, and avoiding the analytical con-
tinuation into the imaginary one.

The shape of(x,t) is shown in Fig. 1a) for the case of
v>aand in Fig. 1b) for v <a. In the first case, the delay in
going fromx=0 tox=1 is clearly identified with the dephas-
ing between the two wave forms. In the second case, this
identification is less evident. A rough criterion for evaluating
the delay, wherx increases, can be obtained by considering
the intersection of the tangent at the initial portion of the
curve with the time axigdotted lines in Fig. (b)], which
increases with an increase in the spatial coordimxat€his
criterion is rather naive; however, it would be exact only if
the curves could be identified with single exponential func-
tions, the time constants of which are given by the above
intersection.

A more refined criterion can be established on the basis of
an analogy of the system under studynarrowed waveguide
section which is the homolog of a rectangular potential bar-
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the shape of Eq(6) for overdamped casds>1 (see Figs.

F(x,t)

os 2.24 and 2.30 in Ref9]) is indeed the same type as that in
- : : : : : : : : ‘ Fig. 4(b). In underdamped cases, << 1, the response is a
0 10 20 30 40 50 60 70 80 90 damped oscillationsee Figs. 2.26 and 2.32 in Rg9)),
@) time (arbitrary units) similar to that of Fig. 1a).

By identifying 1/(2RC) with a and 1/(LC) with v? in Eq.
(1) [10Q], the roots of Eq.(7) —the inverse of the time
constants—foa>v become:

N
po=—at\a?-vi=-atw,. (8)

A natural extension to the case of<0 is to consider the
roots as being given by, ,=-a+ws (ws=yaZ+[v¥). In this
way, we obtain a first noteworthy result: the delay time, as
given by

-05 — , 1 1
0O 10 20 30 40 50 60 70 80 90 ts

(b) time (arbitrary units)

(9)

Ca+tws a+\a?+|v?’

FIG. 1. Shapes of the functidf(x,t) as given by Eq(5): (@) for  is found to be practically coincident with the one reported as
the case ob=0.2 anda=0.05, where the delay, from=0 tox=1, Eg. (5) in Ref.[1] for I=1, namely,
is clearly evidenced(b) for the case o0 =0.07 anda=0.1, where
the delay for the different values is roughly obtained by the inter- , 1 2a
section of the tangent by the time axis. t3= 5{1 - exp(— m)} - (10
rier) with an electric circuit of arRLC type, see Fig. 2. In The time as defined by Eq10) is a direct consequence of
fact, a section of waveguide can be considered as a section Bt¢ hypothesis formulated in R¢8], according to which the
a line which, in turn, is equivalent to an electric network roles of the time variables (the “true” time) and r (the
constituted by resonant circuits of different resonant frequentandomized timpare exchanged when passing from classical
cies. If we limit ourselves to the neighborhood of one resod0 tunneling motions as analyzed within the framework of a
nant frequency, it appears natural to consider a single circufitochastic modef1-3. In Fig. 3 (upper parn, we compare
[7]. According to the analysis of Ref9], the response,(t) ~ the delay as given by Eqg9) and (10) for a=0.1, as a
to a step signal of amplitude can be approximated by the function of v? in the —0.06—0 range. In order to better un-

sum of two exponential functions of the type derstand the dependence on the lergihd the frequency,
it is convenient to rewrite Eq9) as

|
&4(t) = E[exp(pt) - exp(p,0)] ©® (4]
t,=
7 al al\2 [[o]l?
wherep, , are the roots of the characteristic equation given < + ° + o
by [EqQ. (2.34) in Ref.[9]]
g
R c
AAAA = , 11)
7 (a) \/("a) <2|AV|> (
2C 2C o
4P L == v wherec is the light velocity in vacuumy,=9.495 GHz is the
B ¢ cutoff frequencya=2al, andvl=7v is the group velocity in
l waveguide which, fow~ v, is given by

7=cV(2|AY)/vy with Av=v- .
FIG. 2. An RLC circuit which is the analogous of the system
under study(from Ref.[9]). Analogously, Eq(10) becomes
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FIG. 3. Delay in arbitrary units, upper part, as given by 9.
(continuous ling and Eq.(10) (dotted ling as a function ob?, for
a=0.1. In the lower part, the delay in ns as given by Etjl)
(continuous ling and Eq.(12) (dotted ling as a function ofAv
=v—1p in GHz. Parameter values aléc=0.5 ns andd/c=0.112.

,_@ 1-exd - 2|, (12)
t3"<5){ ‘( |5|)]

The curves calculated with Eqgll) and(12) are shown in
Fig. 3 (lower pary as a function ofA», and confirm their
very good agreement.

In order to obtain the delay curve far>v, Eq.(9) simply
becomes

1 1
t, = -

= = (13
2Ta+tw, a+al-y?

and, after the proper substitutions, we have

g

- 2Av A%
ty=—— —= with— < | — . (14
2c 2c Vg

A further extension to upper frequencies, that is, for
2Avlvy>(@l2c)?, can be obtained by considering;,
namely,
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FIG. 4. Delay curve as given by Eqgll), (14), and(16) for
[/c=0.5 ns andd/c=0.16, compared with the experimental data in
the low frequency region for=15 cm and for different series of
measurementgrom Ref.[1]).

1 1
t,= = withw, <a, (15

- - f
a-w; a-\v?-a

which, after the aforesaid substitutions, becomes
B
c
(a) \/ZAV ( E )2
2c Vg 2c

When calculated in the appropriate frequency ranges, Egs.
(112), (14), and(16) give rise to a continuous curve, as rep-
resented in Fig. 4, where the experimental data are also re-
ported for the case df=15 cm. For the constard/c, the
value of 0.160 was selected in order to obtain a reasonable
description of the data. However, the agreement remains
rather poor mainly because of the presence of a pronounced
knee in the theoretical curve, which is not so evident in the
experimental data. However, the description of the data is
now better than that of Fig. 3 in Reffl] where a disconti-
nuity was present in passing frotg to t,, one which is
absent in the present model. The behavior for upper frequen-
cies, described by E@4) in Ref.[1], is not considered here.
The present effort is devoted to the interpretation of the ex-
perimental data in the tunneling spectral region algaeer
frequency range

Until now, the role of the two time constants—the inverse
of —p; » as given by Eq(8)—has been considered separately,
obtaining the results shown in Fig. 4. More properly, for a
system characterized by two time constaptsand r,), the
delay time is given, with a good approximation, by the sum

of the two time constant&see Fig. 2.18 in Refl9]). In the
formulas, we have

t = (16)

11 pitp
teff=m+ Hp=————=—-—"—"—,
P1 P2 P1P2
where ;,=atw=at\a?-v2 Thus, te; is found to be
given simply by

17
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2a 2a b
tett= 2 2~ p2’ (18) 54
which holds also fov?< 0, taking forv? its absolute value.
Since Eq(8) was obtained from Eq7) by identifying 11.C 12
with v2, we deduce that? must have the dimension of
(time)™2. In this way, we rightly obtain a time in Eq18),
wherea has the dimension dtime)™ [10]. Analogously to
what was done in order to obtain Ed1) from Eq.(9) (v 6 1
=c\2|Av|/ vy is a true velocity, we have to modify Eq(18)
by including a factorl? [as already made on Eggll) and
(12)], namely, 21

<

teff22a(|fi})2. (19 94 945 95 955 96 965 97 975

The inclusion ofl2 can be further justified considering that Frequency (GHz)

the delay of a.C cell in an artificial line(that is a series of FIG. 5. Delay curvecontinuous ling as given by Eq(19) for
lumped-constant circuits similar to the one considered)here =15 ¢m a=0.11 ns! and 15=9.56 GHz, compared, always in the
is given by7,=VLC (see Chap. 10 in Ref9]). The delay of  |ow-energy region, with the experimental data. The dashed line,

a S’ection of length of a transm_ission line is given by ~ taken from Ref[1], refers to a previous theoretical model able to
=IVLoCy, wherelL, andCy are the inductance and the capaci- well describe the data in the upper region of frequencies.

tance per unit length, respectively, and/IL{C, is the propa-

gation velocity in the line. By identifying, with 7, in order

to have a velocity as given by=I/7, we must deduc@ cutoff frequency, which is a little larger than the nominal one

=I/\LC, so that (I/7)>=LC rightly has dimensions of [3], namely,»,=9.56 GHz. Thus, a better description of the

(time)2. experimental data is obtained, also considering that is ob-
Equation(19) represents another noteworthy result, sincetained from a single expression. For the sake of complete-

it supplies an expression for the delay time, which is veryness, in Fig. 5 we report also the curve describing the behav-

similar to the one already obtained within the framework ofior in the upper frequency regioftashed line, taken from

a stochastic model, as well as in that of a path-integral treatRef. [1]).

ment, according to which the delay time is given simply by ~ We can therefore conclude that this last approach to tun-

alﬁ, wherets is the semiclassical time just given bfp [1]. neling time determination gives a very acceptable description
The continuous line shown in Fig. 5 was obtained fromof the data, and confirms the prediction already obtained by

Eq.(19) by takinga=0.11 ns! and an effective value for the different approaches to the problgii,12.
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